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Abstract—Systems for allowing users to manage access to their
personal data are important for a wide variety of applications
including healthcare, where authorised individuals may need to
share information in ways that the owner had not anticipated.
Simply denying access in unknown cases may hamper critical
decisions and affect service delivery. Rather, decisions can be
made considering the risk of a given sharing request, and
the trustworthiness of the requester. We propose a trust- and
risk-aware access control mechanism (TRAAC) and a sparse
zone-based policy model, which together allow decision-making
on the basis of the requester’s trustworthiness with regards
to both the information to be shared, and the completion of
obligations designed to mitigate risk. We formalise our approach
and compare it with an existing approach that does not model
trust through simulation.

I. INTRODUCTION

As the volume and richness of personal data grows, so do
the possibilities for its exploitation, both for legitimate and
malicious purposes. From the security and privacy perspective,
there is a need for mechanisms to allow individuals to self-
manage access to their personal data [1]. Many fine-grained
authorisation models have been proposed for the protection
of personal data, the most important being those based on
roles [2], relationships [3] and general attributes [4].

In this paper, we propose a novel access control approach
which is initially risk-taking and permissive. This approach is
applicable to domains with the following characteristics:

• Policy coverage: it is difficult to define policies which
cover all the possible circumstances in which access
should be granted or denied.

• Dynamicity: the context within which access control
decisions are made changes with such frequency that
static policies become quickly outdated.

• Denial risk: inappropriately denying an access request
that should have been granted (due to inadequate policy
coverage) could lead to potentially harmful consequences.

• Delegation: it may be necessary for data owners to
delegate the ability to share information on their behalf.

The healthcare domain exhibits all of these characteris-
tics [5]. The information requirements of various roles in-
volved in a patient’s care are complex and subject to change,
as are the individuals playing those roles (policy coverage,
dynamicity). As a result, it is difficult to define policies which
adequately cover all possibilities. In addition, overly strict
or cautious policies could prevent information from being
available when it is needed (i.e. denial risk). Finally, patients
will not typically be able to anticipate the ways in which
their information may need to be shared, and so must delegate

the ability to share their data to individuals trusted to make
those decisions on their behalf. Here, notions of trust and risk
have significant roles to play. Not all domains have these
characteristics, however, social networks, for example, are
dynamic but rarely involve a denial risk, and it is usually
possible to specify simple policies which cover all the possible
information sharing actions.

We will use the following scenario to illustrate our ap-
proach. A patient, named Alice, is suffering from chronic
depression and is taking part in an intervention which involves
her doctor, Bob, and pharmacist, Charlie, with the aim of
promoting patient compliance with therapies including drugs
and exercise. To monitor compliance, and the effectiveness of
the programme, Alice collects activity data on her smartphone,
based on GPS traces. Her smartphone also records a mood
diary and data about her sleeping patterns, using accelerometer
data. This is then used by Bob and Charlie to make decisions
about Alice’s care. In some cases, Bob may need to share
data with other healthcare practitioners. Alice is aware of this,
and trusts Bob to make sharing decisions on her behalf, but
does not know about the potential recipients of her data, or
the conditions under which it might be shared.

Our contribution is twofold. Firstly, we present a zoned
policy model for describing sparse privacy policies. Secondly,
we present a model of trust-based permissive access control,
and show how established trust assessment methods can be
used to both compute the risks of information disclosure
dynamically, and to mediate the effectiveness of strategies for
mitigating those risks. Prior to formalising and evaluating our
model of trust- and risk-aware access control (RAAC), we
provide a brief overview of the relevant background research
into RAAC and trust assessment.

II. BACKGROUND

A. Risk-aware access control
Risk-aware access control (RAAC) is a novel access control

paradigm that was proposed to address the increasing need
to securely share information in dynamic environments [6].
RAAC introduces an authorisation decision function that
makes decisions based on dynamic assessments of how much
risk is incurred by allowing some access, which could lead
to information disclosure or modification. This risk-aware
approach is more flexible and adaptive than traditional policy-
based approaches, which use fixed, pre-defined authorisation
policies to make decisions, and do not consider contextual risk.

RAAC is a permissive authorisation model in the sense
that some risky or exceptional access requests are allowed,



provided that the risk of permitting access is below a risk
threshold. Risk mitigation methods can be employed to bring
perceived risk within acceptable thresholds. These are gener-
ally obligatory actions that are imposed on the requesting user
or the system itself, to be completed either before or after the
request is granted. In this paper, we will consider obligations
to be completed after an access is granted; as we will show,
this introduces a need for trust.

In summary, there are two key steps involved in developing
a RAAC model: risk conceptualisation and risk mitigation.
Concerning the former, researchers have attempted to incor-
porate the concept of risk into existing authorisation models
such as multi-level security [7], [8] and RBAC [9], [10], or to
quantify the risk for supporting authorisation decision-making
in a specific domain (e.g. clinical information systems [11]).

The authorisation decision-making mechanism proposed by
Dimmock [10] conducts risk analysis for all the possible
outcomes from granting an access request. This risk anal-
ysis considers the trustworthiness of the requester, the cost
of potential outcomes, and pre-defined risk-based security
policies. However, this approach does not provide a means
for learning or updating trust beliefs. Ni et al. [8] make
use of fuzzy inference techniques to estimate risk for access
requests. The authors explore a number of appropriate fuzzy
operations that can be used in the inference process to make
risk-aware authorisation decisions. Wang and Jin [11] propose
an approach to computing risk based on the “need-to-know”
principle. Their approach requires a relevance function which
rates requests as high risk if the requested information is
irrelevant for the specified purpose.

With regard to risk mitigation, a counterpart to risk as-
sessment, there exists some work in RAAC [7], [9] that
provide sophisticated treatment of risk mitigation actions that
are required to be performed by the system after risky access
is granted. However, to our knowledge, little work has focused
on the use of user obligations as risk mitigation methods with
exception of Chen et al. [12]. This work explored some simple
incentive mechanisms (specifically, the enforcement of risk
budgets) for users to fulfil obligations in order to control and
account for the risk incurred by granting access. However,
none of the above approaches consider that users may not be
reliable in fulfilling their obligations or sharing information
appropriately. In this paper, we build upon this in proposing
a novel approach to computing and mitigating risk based on
trust assessment.

B. Trust assessment

Trust assessment mechanisms are used to help determine
how trustworthy some potential partners are with respect to
some issue in a given context. While trust can be defined in
many ways, we define it as the subjective probability with
which an individual believes another will behave as expected
when some issue is delegated. By allowing a requester to
access or share some data, an owner is essentially delegating to
the requester the task of adhering to his privacy preferences,

and exposing himself to the risk that the requester will not
behave appropriately.

For our purposes, probabilistic computational trust mod-
els [13] are appropriate. While the approach presented here
can be used with any probabilistic trust model, we adopt
Jøsang’s widely used Subjective Logic model [14], which is
well known, and based on Bayesian principles. To facilitate a
clearer discussion of our approach, we present a brief overview
of this model here.

1) Opinion representation: An opinion held by an indi-
vidual w about another individual u regarding issue i is
represented by a tuple:

!w

u:i = hbw

u:i, d
w

u:i, u
w

u:i, a
w

u:ii
where bw

u:i + dw

u:i + uw

u:i = 1, and aw

u:i 2 [0, 1]. (1)

Here, bw

u:i, d
w

u:i and uw

u:i respectively represent the degrees
of belief, disbelief, and uncertainty regarding the proposition
that u will behave as we expect with regard to some issue.
The base rate parameter aw

u:i represents the a priori degree of
trust w has about u, before any evidence has been received.

2) Forming and updating opinions: Opinions are formed
and updated based on observations of past performance using
two parameters rw

u:i and sw

u:i, capturing, respectively, the
number of positive and negative experiences observed by w
about u with respect to i. With these two parameters, w’s
opinion about u is computed as follows.

bw

u:i =
rw

u:i

(rw

u:i + sw

u:i + 2)

dw

u:i =
sw

u:i

(rw

u:i + sw

u:i + 2)

uw

u:i =
2

(rw

u:i + sw

u:i + 2)
(2)

Therefore, for an initial opinion with no evidence, bw

u:i = 0,
dw

u:i = 0, uw

u:i = 1 and aw

u:i = 0.5.
3) Trust ratings: Given an opinion computed through Equa-

tion 2, a single-valued trust rating, which can be used to rank
and compare individuals, can be obtained as follows.

P (!w

u:i) = bw

u:i + aw

u:i · uw

u:i (3)

We write P (!w

u:i|rw

u:i, s
w

u:i, a
w

u:i) to denote a rating that has
been derived from r and s evidence parameters and an a priori
rating aw

u:i using Equations 2 and 3.

III. TRUST- AND RISK-AWARE ACCESS CONTROL

We will now formalise our model for trust and risk-aware
access control (TRAAC).



A. A zoned policy model

We assume the existence of a set of objects O and a set of
users U . An object o 2 O represents a piece of data to which
access is controlled by the system. Each object o is owned
by exactly one owner w 2 U . Let O

w

✓ O denote the set
of objects owned by user w. We associate each object with
a policy ⇡w

o

: V ! {share, read
u

, read
s

, deny, undefined},
where V = U \ {w}. This function divides users seeking to
access o into zones, where a user can only be in one zone at a
time. The owner w of o initialises the policy for o by placing
users into share, read

u

, and deny zones. Let ⇧w denote the
set of all policies belonging to a user w.

Users in the deny zone are not allowed to read o. Users in
the read

u

and read

s

zones can, where read

u

contains users
who have been explicitly granted read access by the data
owner. Users in the share zone can read o, and share o with
others. The read

s

contains users who can read o because of a
sharing action performed by another individual from the share

zone. Users in the undefined zone are those for whom no zone
has been explicitly defined by w. The owner w of an object
is a special case; w can add or remove individuals from any
zone, for any object that she owns. For convenience, we may
use read to refer to users who are in either read

u

or read
s

.
We consider two kinds of requests. Firstly, read requests,

defined as read(u, o), denote a request of some user u to
access an object o. Our above policy model is used to evaluate
read requests. Formally, a request read(u, o) is granted if
⇡w

o

(u) 2 {read, share} and denied otherwise (i.e. ⇡w

o

(u) 2
{undefined, deny}).

During the system’s operation, the owner’s initial policy
with respect to a particular object is subject to change, as a
result of sharing actions requested by users in its share zone.
Such share requests are defined as share(u, v, o), and denote
the request of a user u to share o with another user v. The
effect of successfully granting share(u, v, o) is to move v into
the read

s

zone for o. We assume that the policies of a data
owner are visible to requesters. However, in reality, requesters
may not be aware of all of an owner’s policies.

The presence of the undefined zone means that some
sharing actions have no explicit decision defined for them in
advance. In this case, the system must consider its trust in
the requester, and the impact of this on the risk of the request.
We now discuss how these values may be computed to support
decision-making about undefined zone sharing requests.

B. Computing trust

We consider trust in another with respect to some issue.
Here, we consider two kinds of issues when evaluating sharing
requests, and so two kinds of trust:

• Sharing trust (ST): trust that a requester will share
information appropriately and not violate prohibitions;

• Obligation trust (OT): trust that a requester will com-
plete obligations assigned to him.

We use ST to compute the risk associated with allowing a
user to share some information with another. We use OT to

mediate the effects of risk mitigation strategies, which will be
discussed in Section III-D.

1) Updating sharing trust: In order to update trust, it
is necessary to evaluate events and determine whether they
constitute a trust violation or not. To do this, we introduce
a history of the events that have occurred, where events of
interest are instances of information sharing. Let Hshare be
a time-ordered sequence of sharing events, whose members
are instances of requested share(u, v, o) actions. We restrict
a data owner w’s view of the global history to only those
elements regarding the data he owns, so that Hw

share =
{share(u, v, o) 2 Hshare | o 2 O

w

}.
Each data owner w has an evaluation function for

the sharing trust under consideration. Ew

ST

: Hw

share !
{pos, neg, none} determines whether an observed sharing ac-
tion share(u, v, o) necessitates a positive or negative sharing
trust update, or no update. When data is shared into the un-
defined zone, the trust model must make an assumption about
whether this represents a trust violation or not, until such time
as the data owner explicitly specifies a zone for the recipient.
These assumptions can be user-defined for each object. We
capture this via a function A

w

: O
w

! {pos, neg, none} which
specifies how to treat the sharing of an object into its undefined
or read

s

zones. This means an individual v who is in the read

s

zone (i.e. some other individual has shared o with them, but
this has not been explicitly approved by the data owner) is still
considered as being in the undefined zone for the purposes of
updating trust about some u who wishes to share o with v.

The behaviour of the Ew

ST function is defined as follows:

Ew

ST (share(u, v, o)) =

8
><

>:

pos if ⇡w

o

(v) 2 {share, read
u

}
neg if ⇡w

o

(v) 2 {deny}
A

w

(o) otherwise
(4)

Positive trust updates should occur when a user behaves
in a way which is expected by the data owner, with regard
to sharing actions in the undefined zone. Requests to share
information with individuals in the share and read

u

zones
result in a positive update, as this represents explicitly allowed
sharing which brings some benefit to the data owner. Also, the
state of being in the share zone and refraining from sharing
information which violates the policy should increase trust.
To address this, we adopt an “innocent until proven guilty”
approach, that is, individuals in the share zone who have not
yet violated any policy should receive a positive update to re-
flect this. We do this by giving a positive trust update for each
sharing zone an individual is in, where no violations have oc-
curred. That is, �w

u

= |{⇡w

o

| ⇡w

o

2 ⇧w}| such that ⇡w

o

(u) =
share, and for all share(u, v, o) 2 Hw

share ,⇡
w

o

(v) 6= deny.
Requests to share information with individuals in the deny

zone can be considered a breach of trust, even though they
are denied, and will result in a negative trust update.

Now, using a user’s policy set ⇧w, sharing history Hw

share

and evaluation function Ew

ST , we can arrive at a trust value
for a given user. Let G(u, Hshare) = {share(u0, v, o) 2



Hshare | u0 = u} denote the elements of a history Hshare

involving u sharing some information with some recipient.
Using Equation 4, the evidence parameters rw

u:ST and sw

u:ST
for sharing trust can be computed as follows:

rw

u:ST = |{⇢ 2 G(u, Hw

share) | Ew

ST (⇢) = pos}| + �w

u

(5)
sw

u:ST = |{⇢ 2 G(u, Hw

share) | Ew

ST (⇢) = neg}| (6)

We then compute P (!w

u:ST ) using Equations 2 and 3.
2) Updating obligation trust: Let Obs denote the global

set of all obligations. We define a function f : Obs !
{active, satisfied} that indicates the current status (active or
satisfied) for each obligation. Let Hassign be a time-ordered
sequence of obligation assignment events, whose members are
of form assign(u, ob, o) and denote that a user u was assigned
an obligation ob 2 Obs , which was generated as part of a
risk mitigation strategy for sharing some object o. We write
Hw

assign = {assign(u, ob, o) 2 Hassign | o 2 O
w

} to denote
parts of the global history relevant to the data w owns.

Similarly to sharing trust, Ew

OT : Hw

assign ! {pos, neg}
determines whether an obligation has been satisfied or not.

Ew

OT (assign(u, ob, o)) =

(
pos if f(ob) = satisfied

neg otherwise
(7)

In contrast to sharing trust, we adopt an “guilty until
proven innocent” approach for updating obligation trust, that
is, users who accept an obligation after a sharing request was
granted should receive a negative update until the obligation
is satisfied. In this way, we address users who accept many
obligations, but do not satisfy them. In practice, the f function
could be extended in various ways to allow more fine-grained
assessment of the state of obligations (e.g. deadlines).

Let G(u, Hassign) = {assign(u0, ob, o) 2 Hassign | u =
u0}. Then we have:

rw

u:OT =
��{⇢ 2 G(u, Hw

assign) | Ew

OT (⇢) = pos}
��

sw

u:OT =
��{⇢ 2 G(u, Hw

assign) | Ew

OT (⇢) = neg}
�� (8)

As before, we compute P (!w

u:OT ) using Equations 2 and 3.

C. Computing risk
We adopt a common decision-theoretic view of risk [15],

and define it in terms of the expected loss in the event of un-
wanted disclosure after granting a sharing request. Generally,
risk is defined as the product of the probabilities of undesirable
events and the loss that would be sustained if those events
occurred.

Loss can be difficult to define for non-economic domains.
In healthcare, the loss in the case of information disclosure
could include emotional damages (e.g. loss of partner, family
problems, stigmatisation) as well as financial ones (e.g. loss of
job, insurance premium increase). We adopt a proxy for loss
based on the sensitivity of information, assuming that the more
sensitive some information is perceived to be, the greater the

subjective loss would be in the event of its disclosure [7].
Such categorisations of the sensitivity of information have
been investigated in the healthcare domain to aid privacy
management [1].

We define the sensitivity categories as a strict totally ordered
set C. That is, for all c, c0 2 C, either c < c0 or c > c0.
Each user u has a mapping m

u

: O
u

! C which assigns
a sensitivity category to each object. We write R[0,1] for the
set of real numbers between 0 and 1; that is, R[0,1] = {x 2
R | 0 6 x 6 1}. Let L : C ! R[0,1], be a loss function
which assigns a real loss value to the unwanted disclosure of
information in each sensitivity category.

Given a request r = share(u, v , o), where w is the owner
of o, we can now define risk as:

Risk(r) =

8
><

>:

0 if ⇡w

o

(v) 2 {share, read
u

}
1 if ⇡w

o

(v) 2 {deny}
(1� P (!w

u:ST )) · L(m
w

(o)) + Risks otherwise
(9)

It can be seen that the risk associated with request
share(u, v, o) is 0 if ⇡w

o

(v) 2 {share, read
u

}. In contrast,
if ⇡w

o

(v) 2 {deny}, then the risk is 1. By the risk-
aware authorisation function defined in Section III-D, request
share(u, v, o) will be allowed if its associated risk is 0,
and will be denied when the risk equals to 1. However,
if ⇡w

o

(v) 2 {undefined, read
s

}, then the risk is determined
by u’ trustworthiness in sharing information and loss value
associated with o. In addition, we assume that risks from
other sources, such as inappropriate disclosure due to system
security vulnerabilities, are accounted for elsewhere. Since
these risks are not depend on the individual making the access
request, we consider them as a given constant Risks (system
risk).

D. Checking sharing requests

Given the level of request risk, based on the trustwor-
thiness of the requester and the sensitivity of the requested
information, we can now define our mechanisms for checking
information sharing requests.

1) Risk intervals: We assume the existence of a risk domain
D that is defined to be R[0,1]. We write [d, d0) to denote the
risk interval {x 2 D : d 6 x < d0}. We then define a risk
mitigation strategy to be a list of interval-obligation pairs,
that is  = [(d0,?), (d1, ob1), . . . , (dn�1, obn�1), (dn

,?)],
where 0 = d0 < d1 < · · · < d

n

6 1 and ob
i

2 Obs is an
obligation that the requesting user should fulfil. We write ?
to denote a null obligation, which indicates that the requester
is not required to do anything.

Informally, if the risk associated with a sharing request
share(u, v, o) is d, then u is required to perform the obligation
corresponding to the interval containing d. We write  .d

n

to
denote the start point of the most risky interval, [d

n

, 1]. We
write  to denote a set of risk mitigation strategies.

We associate each sensitivity category with a risk mitigation
strategy, defined by an injective function � : C !  . In other



Algorithm 1 Adjusting risk intervals
Require:  a risk mitigation strategy
Require: P (!w

u:OT ) the obligation trust of u
Ensure:  0, an adjusted risk mitigation strategy

1: function ADJUSTRI( , P (!w

u:OT ))
2:  = [(0,?), (d1, ob1), . . . , (dn

,?)]
3:  0  [(0,?)]
4: for i = 1 to n do
5: d0

i

 (d
i

� (1� P (!w

u:OT )) · (d
i

� d0
i�1))

6: add (d0
i

, ob
i

) to  0

7: end for
8: return  0

9: end function

words, � maps any two distinct elements of C to distinct
elements of  . Specifically, given two sensitivity categories
c and c0, if c < c0, then we require that �(c).d

n

> �(c0).d0
n

.
This means the more sensitive an object is perceived to be,
the lower the acceptable risk threshold for granting requests
regarding sharing the object would be.

Notice that when a user u fulfils an assigned obligation, the
system would perceive that this action mitigates the risk of
granting u’s prior sharing request. On the other hand, if u fails
to complete an assigned obligation, then the risk mitigation
strategy can be considered unsuccessful, in that the initial risk
has not, in fact, been mitigated. Therefore, we now describe
how u’s trustworthiness in fulfilling obligations determines the
effectiveness of the risk mitigation strategy for her subsequent
requests.

2) Authorisation and risk mitigation: Formally, given a
sharing request r = share(u, v, o), where w is the owner of
o, we can derive the sensitivity category associated with o by
computing c = m

w

(o), and the risk mitigation strategy for o
by �(c). Let P (!w

u:OT ) denote the trust w places in u in terms
of fulfilling obligations (defined in Equation 8).

We derive a new risk mitigation strategy �(c)0 by dynami-
cally adjusting risk intervals in �(c) on the basis of P (!w

u:OT ),
as illustrated in Algorithm 1. The algorithm describes the
process by which the start point d

i

of each interval [d
i

, d
i+1)

is shifted downs to d0
i

. The shifting distance for each d
i

is
determined by two factors: P (!w

u:OT ) and distance between
d

i

and d0
i�1 (the last point that has been shifted). If a user

has a very high trust rating (e.g. 1), then these intervals do
not change, that is d0

i

= d
i

for all i 2 [0, n]. Conversely,
if u has a poor history of carrying out obligations (e.g. 0),
then all intervals [d

i

, d
i+1), where 0 6 i < n, disappears,

because it is completely cover by [d0
n

, 1], where d0
n

= 0.
Informally, the effect of Algorithm 1 is to reduce the risk
which can be allowed by the risk mitigation strategies; the
less trustworthy a requester is with regard to obligations, the
lower the thresholds for using risk mitigation strategies will
be. For example, for a completely untrusted agent, no risk
mitigation will be available.

We now define an Auth function that evaluates the sharing

d1
0.3

d2
0.7

risk=0 risk=1

d2’
0.43

risk=0 risk=1
d1’
0.15

allow : ⊥ allow : ob1 deny : ⊥
P (!w

u:OT

) = 1

P (!w

u:OT

) = 0.5

Risk(r) = 0.6

decision:
allow with obligation

decision:
deny

Fig. 1: Risk mitigation through dynamic risk intervals

request r on the basis of the adjusted risk mitigation strategy
�(c)0 as follows:

Auth(r) =

8
><

>:

(allow,?) if Risk(r) 2 [0, d1)

(allow, ob
i

) if Risk(r) 2 [d
i

, d
i+1), 1 6 i < n

(deny,?) otherwise
(10)

In other words, the Auth function associates unconditional
allow and deny responses with the least [0, d1) and most
[d

n

, 1] risky intervals respectively. Otherwise, the request r
is permitted but u is obliged to perform obligation ob

i

when
Risk(r) belongs to [d

i

, d
i+1), where 1 6 i < n.

Fig. 1 gives an example of how Algorithm 1 and Auth
work. A given request r with Risk(r) = 0.6, where the
obligation trust of the requester P (!w

u:OT ) = 1 (completely
trusted), will fall into the second risk interval [d1, d2) and will
be granted together with the obligation ob1. However, when
the requester is moderately trusted, that is, P (!w

u:OT ) = 0.5,
the thresholds d1 and d2 will be shifted to d01 = 0.15 and
d02 = 0.43 respectively. Now the request falls into the last risk
interval [0.43, 1], and will be denied.

IV. EVALUATION

In order to assess the effectiveness of a trust-based approach,
we compare our model, which uses trust and risk assessment
and dynamic risk intervals, against the model described by
Chen et al. [12], which does not consider trust, and uses fixed
risk intervals.

A. Experiment Design
We employ a simulated agent society, where 40 requesters

make requests to share information belonging to 400 owners
with a number of recipients, where recipients are drawn from
the same pool as requesters. Requesters vary in competence
both with regard to sharing information (referred to as sharing
competence, or SC ) and fulfilling obligations (referred to as
obligation competence, or OC ). We define four behavioural
profiles from which requesters are generated (Table Ia).

Agents with high SC are more likely to share with recipi-
ents in the read

u

and share zones. When they share into the
undefined zone, the recipients are likely to be those which the
data owner will later add to the read

u

zone. To model this, we



TABLE I: Experimental parameters

(a) Requester profiles

id SC OC Count
GG 0.8 0.5 10
GB 0.8 0.1 10
BG 0.3 0.5 10
BB 0.3 0.1 10

(b) Risk intervals

id Interval Decision
i1 [0, 0.2) (allow,?)
i2 [0.2, 0.6) (allow, email)
i3 [0.6, 1] (deny,?)

(c) Parameter settings

Parameter Value Description
Nsteps 500 Number of time steps
Nruns 100 Number of runs in each condition
Nown 400 Number of data owners
Nreq 40 Number of requesters

InitialBudget 10 Initial risk budget
BudgetDec 1 Budget decrement

awu:ST 1 Sharing trust prior
awu:OT 1 Obligation trust prior
Ptimeout 0.1 Obligation time-out probability

separate the undefined zone into two zones, undefinedgood and
undefinedbad . When an agent selects a recipient to share with,
the recipient will be drawn from the owner’s read

u

, share,
or undefinedgood zones with probability SC , and from other
zones with probability 1� SC .

Each owner’s policy is initialised by randomly assigning
recipients to zones. Then, in each time step, we generate
a request for each owner, drawing a requester from that
owner’s share zone. The requester then selects a recipient
to share some information with. The sensitivity category of
this information randomly set to either high , medium or
low , with an associated disclosure loss of 1, 0.5 and 0.2
respectively. The sharing request is handled according to the
experimental condition, using the risk intervals and obligations
in Table Ib. All requesters initially have a risk budget of 10.
The system may assign an obligation email to the requester,
reducing the budget by BudgetDec = 1. In each time step,
each requester will complete an outstanding obligation with
probability OC , and each outstanding obligation will “time-
out” with a probability of 0.1, resulting in a permanent loss
of risk budget.

We employ three experimental conditions:
• No-Trust: no sharing or obligation trust assessment is

performed. The risk of a request to share information
with sensitivity c in this condition is simply L(c). This is
equivalent to assuming P (!w

u:ST ) = 0 for every u 2 U .
Risk budgets are used to support authorisation decision-
making.

• ST-Only: sharing trust, and the risk of granting a sharing
request is computed based on the requester’s past actions
and the sensitivity of information. Risk budgets are used
as before.

• ST-OT: both sharing and obligation trust assessment is
performed. Dynamic risk intervals and obligation trust
are used, and risk budgeting is disabled (by setting
BudgetDec = 0).

For the ST-Only and ST-OT settings (which employ trust
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Fig. 2: Average utility gain of agents in each time step

models), the aw

u:ST (a priori) parameter is important. Setting
this to 1 will result in a sceptical agent, while setting to 0
will result in a naive agent. We set aw

u:ST = 1 for all agents,
representing that agents are initially optimistic at the outset.
Similarly for obligation trust, we set aw

u:OT = 1, as this means
that the risk intervals will be unaffected when an owner has
no evidence about a requester.

We score model performance in the following way. A
model receives utility U(c) when category c is shared in the
undefinedgood zone. When c is shared to undefinedbad , U(c)
is deducted. Our simulation runs over 500 time steps. Each
condition was run 100 times, with the global utility results for
each time step averaged. Table Ic summaries all the parameter
settings for our simulation.

B. Results

Fig. 2 shows the average utility gain of agents over time, in
each experimental condition. Since all penalties and rewards
are in the range [0, 1], the global average utilities are quite
small. In the No-Trust condition, the model averages around
0, allowing equal numbers of good and bad requests. This is
expected, as the model does not learn, and instead pessimisti-
cally assumes that P (!w

u:ST ) = 0 for all requesters. In the
ST-Only setting, we see that performance gradually climbs to
around 0.13, before falling away. The ST-OT model performs
best, rapidly reaching 0.14 and remaining there. This means
that the model quickly and consistently rejects requests from
untrustworthy agents.

We hypothesised that the ST-OT model would perform best,
as it can more rapidly respond to requesters with low OT by
adjusting risk intervals, while the ST-Only model can only
fully block requesters who have no risk budget. Furthermore,
users with high ST but low OT (i.e. the GB profile) will
receive more favourable treatment with the ST-OT model than
with ST-Only. These requesters will fall into low risk intervals,
and will not be affected by their poor obligation performance
in ST-OT; however, they are blocked by depleting their risk
budget under ST-Only.
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Fig. 3: Average utility gain, ↵w

u:ST = 0

This also explains the falling-off of utility for ST-Only
models. Here, requesters who deplete their risk budget are
unable to make further requests, which is the only way
to obtain further obligations to rebuild their budget again.
Requesters who deplete their budget are then “locked out”
of the system, including those who have high ST .

To assess the effect of the sharing trust prior parameter
↵w

u:ST , we ran our experiments with ↵w

u:ST = 0 (Fig. 3).
We found no change in the No-Trust condition. However,
the ST-Only model now receives a rapid spike of early high
performance, quickly reaching 0.1, but falling off quickly
to around 0.04. The ST-OT model, on the other hand, now
improves more slowly, taking much longer to converge to 0.14.

One possible reason for this may be that, with ↵w

u:ST = 0,
ST-OT owners are more sceptical, over-estimating risk, and
initially reject more high-risk requests from individuals in
undefined

good

. This appears to indicate that an optimistic value
for ↵w

u:ST is appropriate, when there is an even distribution
of good and bad agents (GG and BG). The ST-Only model
appears to perform more poorly, as agents from the GB class
(high ST , low OT ) are “locked-out”, reducing the number of
good requesters, while the dynamic risk intervals used by the
ST-OT model do not exclude these agents.

V. DISCUSSION

As we have shown, using trust and loss to compute risk can
be beneficial. Our TRAAC model performs a similar function
to risk budgets by adjusting the effectiveness of risk mitigation
strategies. Users will eventually be denied access once they
are not trusted enough to perform obligations, and fall into
the deny interval. With sufficient knowledge of a domain, risk
budgets and decrements could be designed to out-perform our
approach. However, dynamic risk intervals have the advantage
of not requiring explicit budget parameters, and so are useful
when these values are not known.

Our zoned policy model facilitates iterative policy authoring
and refinement. Users can inspect and audit the system’s de-
cisions and classify them as good or bad. While our approach
makes assumptions and sharing decisions on behalf of the

user, the user always retains the ability to define fixed groups
of individuals who absolutely can, or cannot access some
information. The ability of users to audit system behaviour
is critical if such mechanisms are to be accepted, and this
goal can be supported by the capture of provenance [16]. Our
model considers the trustworthiness of requesters, but does not
consider aspects of the context when making trust updates,
such as the reason behind a particular violation. For example,
a doctor may be bound by legal or ethical responsibilities
to share information in certain situations. Sometimes, it is
appropriate to mitigate trust update based on the context of
a violation, without necessarily changing the data owner’s
policy. Capturing rich provenance about the contexts and
reasons behind violations, we can avoid forming trust assess-
ments which do not reflect the underlying trustworthiness of
a requester.

While we explicitly assume that owners’ policies are visible
to requesters, policies themselves could be considered as sen-
sitive information. By assuming visibility of policies, we can
ascribe “blame” for violations to the requester, who has either
willingly violated or neglected to check the owner’s policy
beforehand. If we assume that policies are not necessarily
visible, then requesters could violate them without realising.
This could lead to unfair situations. For example, a requester
could violate a policy and become less trustworthy, but would
not have caused a violation had the policy been visible to
him. Weakening this assumption and maintaining fairness is
an interesting future challenge.

We have considered classes of users who can read in-
formation, and users who can both read and share with
others. However, we represent sharing as the ability to add
others to the read zone. In reality, information can always
be leaked beyond the system boundaries, and so a “read-
only” zone is unrealistic, and so it is more realistic to assume
that anyone who can read some data can also share it. This
introduces the possibility of sharing chains, where information
is disseminated around a network by users with sharing ability.
Previous work has considered ways in which trust can be
calculated when tasks can be sub-delegated, creating chains
of trust [17], and similar techniques could be applied to
computing information sharing risk when there is a potential
for information to be disseminated within a network.

Interestingly, the model presented here permits sub-
delegation of risk-mitigation obligations. There is no require-
ment that the individual who accepts an obligation as part of a
risk mitigation strategy be the same individual who eventually
completes it. Deposited risk budget is always returned to
the individual who accepted an obligation on its completion.
However, in our mechanism, the individual who accepts an
obligation receives an immediate trust reduction, but only
the individual who actually performs the obligation receives
the associated positive trust update. This disincentivises sub-
delegation. While this scheme seems intuitive, and may be
desirable, many others are certainly possible. These sub-
delegation issues are an interesting avenue for future work.

Through our requirement that a data item have only one



owner, we are making a strong assumption. In many do-
mains, including healthcare, a data item could have multiple
stakeholders, whose policies have some influence over what
can be done with that data. Consider a data item having
multiple stakeholders, whose zoned policies are initially iden-
tical. Initially, the authorisation decision function would result
in a “consensus” decision. However, the stakeholders could
have different attitudes to risk, and different experiences with
requesters in other settings. As time goes on, the decisions
returned by each stakeholder for a given request would be-
gin to diverge. In this case, we may consider negotiation,
argumentation and conflict resolution approaches to reaching
consensus.

Finally, it is important to give consideration to ways in
which such a system may be open to manipulation. One
potential weakness is our assumption of a single ST trust
model for all data items belonging to an owner. This means
that a requester’s trustworthiness is assumed to be an intrinsic
variable, not dependent on the information he can share.
As a result, trustworthiness can be “transferred” across data
items, leading to faster bootstrapping of the owner’s trust.
However, since data items can belong to different sensitiv-
ity categories and can have different disclosure losses, it is
possible for requesters to become highly trusted by exhibiting
good ST and OT behaviour with requests to low-sensitivity
information [18], in order to gain access to higher-sensitivity
information, with the goal of exploiting it.

This could be addressed by maintaining separate trust
models for each sensitivity category. Such a model is used
when assessing a request for a data item for which there is no
evidence, but for which evidence exists about other data items
in the same sensitivity category. Another interesting approach
may be to apply stereotypical trust models, which can learn
generalised assessments of trustworthiness based on attributes
of a request [19], such as requester features (such as roles
or qualifications), contextual attributes (such as the place and
time of the request) or social attributes (such as relationships
between the requester and other individuals or groups).

VI. CONCLUSION

We have presented a trust- and risk-aware access control
model for controlling the data sharing activities of users. Our
approach considers two kinds of trust in the requester: sharing
trust and obligation trust.

Moreover, we have proposed a sparse zoned policy model
for personal data, which provides a far greater coverage of
policy than existing models with the inclusion of share and
undefined zones. We evaluated our approach by simulation,
and our results suggest that considering both kinds of trust,
with dynamic risk intervals, results in more desirable access
control behaviour than using fixed risk budgets, or not con-
sidering trust at all.

Our model is primarily motivated by the privacy require-
ments of patients’ healthcare records. However, we believe
that they can be adapted for many other situations, particularly

where both inappropriate sharing, and failing to share properly,
entail significant risks.
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