
UWL REPOSITORY

repository.uwl.ac.uk

A parallel self-organizing community detection algorithm based on swarm

intelligence for large scale complex networks

Sun, Hanlin, Jie, Wei ORCID: https://orcid.org/0000-0002-5392-0009, Sauer, Christian, Ma, Sugang,

Han, Gang, Wang, Zhongmin and Xing, Kui (2017) A parallel self-organizing community detection

algorithm based on swarm intelligence for large scale complex networks. In: 41st Annual IEEE

Conference on Computers, Software and Applications (IEEE COMPSAC'2017), 04-08 July 2017,

Torino, Italy.

http://dx.doi.org/10.1109/COMPSAC.2017.31

This is the Accepted Version of the final output.

UWL repository link: https://repository.uwl.ac.uk/id/eprint/3308/

Alternative formats: If you require this document in an alternative format, please contact:

open.research@uwl.ac.uk

Copyright:

Copyright and moral rights for the publications made accessible in the public portal are

retained by the authors and/or other copyright owners and it is a condition of accessing

publications that users recognise and abide by the legal requirements associated with these

rights.

Take down policy: If you believe that this document breaches copyright, please contact us at

open.research@uwl.ac.uk providing details, and we will remove access to the work

immediately and investigate your claim.

mailto:open.research@uwl.ac.uk
mailto:open.research@uwl.ac.uk

A Parallel Self-Organizing Community Detection
Algorithm Based on Swarm Intelligence for Large

Scale Complex Networks

Hanlin Sun∗, Wei Jie†, Christian Sauer†, Sugang Ma∗, Gang Han‡, Zhongmin Wang∗, and Kui Xing∗
∗Big Data Research Centre, Xi’an University of Posts and Telecommunications, China

†School of Computing and Engineering, University of West London, UK
‡Department of Electronic Science and Technology, Northwestern Polytechnical University, China

Abstract—Community detection is a critical task for complex
network analysis. It helps us to understand the properties of
the system that a complex network represents and has signifi-
cance to a wide range of applications. Nowadays, the challenges
faced by community detection algorithms include overlapping
community structure detection, large scale network analysis,
dynamic changing of analyzed network topology and many more.
In this paper a self-organizing community detection algorithm,
based on the idea of swarm intelligence, was proposed and its
parallel algorithm was designed on Giraph++ which is a semi-
asynchronous parallel graph computation framework running on
distributed environment. In the algorithm, a network of large
size is firstly divided into a number of small sub-networks.
Then, each sub-network is modeled as a self-evolving swarm
intelligence sub-system, while each vertex within the sub-network
acts iteratively to join into or leave from communities based
on a set of predefined vertex action rules. Meanwhile, the local
communities of a sub-network are sent to other sub-networks
to make their members have a chance to join into, therefore
connecting these self-evolving swarm intelligence sub-systems
together as a whole, large and evolving, system. The vertex
actions during evolution of a sub-network are sent as well to
keep multiple community replicas being consistent. Thus network
communication efficiency has a great impact on the algorithm’
performance. While there is no vertex changing in its belonging
communities anymore, an optimal community structure of the
whole network will have emerged as a result. In the algorithm
it is natural that a vertex can join into multiple communities
simultaneously, thus can be used for overlapping community
detection. The algorithm deals with vertex and edge adding or
deleting in the same way as the algorithm running, therefore
inherently supports dynamic network analysis. The algorithm
can be used for the analysis of large scale networks with its
parallel version running on distributed environment. A variety
of experiments conducted on synthesized networks have shown
that the proposed algorithm can effectively detect community
structures and its performance is much better than certain
popular community detection algorithms.

I. INTRODUCTION

Nowadays, there are a lot of complex systems involved in
people’s daily life. The World Wide Web, mobile communica-
tion networks, online social networks, power grids, traffic road
networks, etc., are just some examples. Such a system is often
modeled as a mathematical complex network to investigate.
A complex network usually shows some interesting properties
such as high network transitivity, power-law degree distribu-
tion, small world, scale free, the existence of community struc-
tures, and much more. The study of community structures can

help us to understand those systems at a middle-scope level,
just between the macroscopic level in which the whole system
is considered and the microscopic level in which each node
is analyzed individually. Actually the analysis of community
structures has significance to many applications. For example,
community structure analysis can be used in a social commu-
nity or network (e.g. Facebook) which presents relationships
between community members. The analysis of such networks
will help to design reliable friend recommendation systems. As
another example, community structure analysis can be used in
detecting communities of customers with similar purchasing
interest in e-business networks. This can lead to setting up
efficient product recommendation systems and thus improving
business opportunities for product retailers.

There is no a unanimous definition of community, however.
An exact definition depends on the underlying problem and
its application. For example, the definition could be based
on degrees of vertexes [1], k-cliques [2], k-clans [2], k-clubs
[2], etc. Filippo et.al. [1] gave out the definition of strong
sense community and weak sense community according to
member connection strength. Michele et.al. [3] proposed a
number of meta definitions. Intuitively, a community is a group
of vertices in a network that has more edges (connections)
among its members but comparatively has less edges between
its members and the rest of the network nodes. This simple
concept is the core of nearly all community definitions.

Community structure analysis of complex networks has
attracted much interest. A number of algorithms originating
from different fields, such as physics, statistics, data mining,
evolutionary computation and many more have been proposed.
There are many different strategies behind these community
detection algorithms, such as divisive hierarchy, agglomerative
hierarchy, random walking, information diffusion, spectrum
analysis, statistical inference and so on. Several comprehensive
reviews of these methods have been conducted, for example,
a survey of community discovery methods was provided with
a special focus on techniques designed by statistical physicists
[4]. The meta definitions of a community in a complex network
was given and the majority community discovery methods was
summed up based on their own definitions [3]. Overlapping
community structure analysis algorithms were reviewed in [5]
and [6], where those for social network analysis were reviewed
in [7]. In an overlapping community structure, a vertex could
join into multiple communities simultaneously, thus having an
effect on an algorithm’ performance. The performance of some

algorithms were compared in [6] and [8].

The properties of very complex networks induce three
staple challenges for a community detection algorithm: (1)
overlapping community structure detection, especially high
overlapping density (a large percent of vertices are overlap-
ping) and high overlapping diversity (an overlapping vertex
belongs to a large number of communities), (2) large scale
network analysis, e.g., the number of vertices and edges could
reach the scale of several billions and even more, and (3)
dynamic changing of the analyzed networks topology, i.e., a
large number of vertices and edges could appear or disappear
frequently. The problem about very dynamic, large scale
networks is how to find community structures within them
quickly with as less effort as possible. Most of the traditional
algorithms are incapable of beating these challenges mainly
because of their heavy computational cost or model limitations.

In this paper we present a Paralel Self-Organizing Commu-
nity Detection (PSOCD) algorithm based on the idea of swarm
intelligence (SI), which can run in distributed environment.
Swarm intelligence is the collective behavior of decentralized
and self-organized systems, either natural or artificial. Gen-
erally, in an SI system, there is a large number of simple
individuals who can only perform simple actions and interact
with nearby neighbors locally as well as with the environment.
Intelligence emerges as a consequence of the sum of these
simple actions and interactions. It is believed that SI seems
not to be a coincidence but rather a property of a variety of
systems. In the PSOCD algorithm a network to be analyzed
is modeled as a SI system in which each vertex decides its
own actions, i.e., leaving its original communities or joining
into new communities, depending on predefined action rules.
Ultimately an optimal community structure will emerge as
each node acts iteratively until no node changes its community
anymore. In addition a vertex is naturally allowed to join into
multiple communities, thus overlapping community structure
could be discovered. The approach of the PSOCD algorithm
inherently supports efficient dynamic network analysis, as
only community associated with vertices that are affected by
network changes need to be adjusted in the way the algorithm
works and no further special steps need to be considered.
Lastly, the implementation of the parallel algorithm assures
it could be used for large scale network analysis.

The remainder of this paper is structured as follows: In
section II, some most related overlapping community detection
algorithms are briefly reviewed. In section III, the PSOCD
algorithm is described formally. The time complexity of the
algorithm is analyzed as well. In section IV, the evaluation re-
sults of the algorithm is presented for a number of synthesized
complex networks. Finally, section V concludes the paper.

II. RELATED WORKS

As for overlapping community detection, generally there
are two classes of algorithms: (1) algorithms that uncover
overlapping communities directly on complex networks and (2)
algorithms that work based on non-overlapping algorithms, i.e.,
first finding non-overlapping community structures by using
existing non-overlapping community detection algorithms and
then adjusting marginal members of discovered communities
and their neighbors to discover an overlapping structure. In this

section, we briefly introduce some algorithms most related to
our work.

A. LPA

A label propagation algorithm (LPA) is currently the fastest
algorithm for community structure analysis, with a near-linear
time complexity. The idea is that, as information propagates on
a network with a community structure, it will has a high prob-
ability propagating within a community. At first, each vertex is
assigned a label, indicating the community to which it belongs,
then each vertex sends its label to its neighbors and selects a
label received from neighbors, e.g., the label adopted by the
most neighbors, as its new label. By iteratively propagating
labels among neighboring vertexes, the community structure
will gradually emerge. Assuming that a vertex is able to hold
more than one label, LPA can be extended for overlapping
community detection. There are a number of improved algo-
rithms based on the LPA approach for overlapping community
detection, such as COPRA(Community Overlap PRopaga-
tion Algorithm) [9], MLPA(Multi-Label Propagation Algo-
rithm) [10], BMLPA(Balanced MLPA) [11], SLPA(Speaker-
Listener LPA) [12], LPAcw(LPA with consensus weight) [13],
DLPA(Dominant LPA) [14], etc. They are differentiated by the
way the selecting labels and their propagating strategies. How-
ever, the problem of LPA is that its result is unstable and the
precision of correctly detected communities is unsatisfactory,
due to the inner randomness of the algorithm, especially for
networks with high overlapping density and high overlapping
diversity.

B. Local Expansion

In local expansion algorithms a seed vertex or vertices-set
is given first as an initial community, and neighboring vertices
of members join into the seed community if their joining can
improve the community quality. When there is no vertex left
to improve the community quality by joining the community,
a complete community is discovered. A new seed (vertex or
vertices-set) is then selected from those vertexes not joined
into any community yet and a new community is detected in
the same way as the previously detected communities. Given a
seed community, if all other vertexes can try to join into it, but
not only those not joined into any community yet, this strategy
can be used for the detection of overlapping communities.
The algorithms IS(Iterative Scan) [15], RaRe(Rank Removal)
[15], IS2(Improved IS) [16], LFM [17], fast LFM [18],
DOCS(Detecting Overlapping Community Structures) [19],
MOSES(Model-based Overlapping Seed ExpanSion) [20], and
OSLOM(Order Statistics Local Optimization Method) [21] are
just some examples. However, the results of such an algorithm
heavily depends on the quality of the selected seeds.

C. Local Optimization

The basic idea behind local optimization strategy is merg-
ing partial sub-communities. First, find partial communities
for each vertex on its local sub-network, which is usually
a sub-network called egonet, consisting of the vertex and
its neighbors and their connections. Then, merge the found
partial communities according to a set of given rules. For
example, if two partial communities are most similar, or if the
quality of the merged community is improved, then retain the

new merged community and delete the two previous, smaller,
communities. The merging continues until there are no such
two communities still existing. Detecting partial communities
on a local egonet is a simple task since the network size is
usually small, but the merging procedure is complex for there
are usually a large number of partial communities needed to
be tested for merging. The algorithms DEMON(Democratic
Estimate of the Modular Organization of a Network) [22],
PCMA(Partial Community Merger Algorithm) [23], EgoClus-
tering [24] and the one proposed in [25] are such algorithms
following the described approach of merging partial sub-
communities.

D. Game Theory

The algorithms based on game theory try to mimic a
procedure through which the community structure of a network
developed to the current state. In such an algorithm, a vertex
is viewed as a rational or selfish individual, and it decides
its own community association according to a defined utility
function. While the utility function is linear locally, the Nash
equilibrium, at which state no individual can increase its utility,
could be reached, and in such an equilibrium state, a com-
munity structure could be deduced. An individual is allowed
to join into multiple communities, and thus the algorithm
could be used for overlapping community detection. The algo-
rithms in [26] and [27], PSGMAE(Pearson correlation GAME)
[28], NGGAME(Neighborhood similarity GAME) [28], and
SID(Social Information Diffusion) [29]are just some examples
based on the game theory. Their differences lie within the
design of the utility functions they employ. However, the
required local linear property of the utility function may limit
the usage of such a method while the community properties
could not be expressed in such a function.

E. Swarm Intelligence

Swarm intelligence ranges over a number of algorithms in-
spired by natural bio-systems, including the Genetic Algorithm
(GA) and the Ant Colony Optimization (ACO) algorithm. Both
of the two algorithms were used for community detection.
The GA-NET+ [30] is GA based and used for overlapping
community detection by working on a link network translated
from a normal network, in which a vertex and an edge repre-
sent an edge and a vertex of the original network respectively.
However, due to the limitation of the representation method for
evolutionary individuals, the GA based algorithm can not be
used for large scale network analysis. Generally, the number
of edges of a network is much larger than the number of its
vertexes, therefore the size of a link network is much larger
than the size of the corresponding original network. In [31], the
AntCBO algorithm was proposed for overlapping community
detection. Intrinsically, this algorithm is a type of LPA but the
label propagation among neighboring vertices is realized by
the ”‘ants”’ of the ACO algorithm framework.

Based on the EgoClustering algorithm, the same authors
proposed an overlapping community detection algorithm, the
COGS (Community Optimization Graph Swarm) [32]. In
COGS, a network is treated as a swarm intelligence system
and a vertex interacts with its neighbors to find the Friendship-
Group (a type of partial community). Then the algorithm
finds Friendship-Groups that should be merged, based on the

LPA idea, through propagating community labels among such
groups. In COGS, the SI is only used for finding Friendship-
Groups, which is a part of the community detection procedure.
Our algorithm is different in that way that we use SI as a
framework to imitate a procedure through which the commu-
nity structure of a network reaches its current state. The authors
also presented a multi-thread parallel version COGS [33].

F. Algorithms Based on Non-Overlapping Algorithms

Tanmoy [34] analyzed the community structures of a
number of real networks and found that there is a strong sim-
ilarity between the structure discovered by a non-overlapping
community detection algorithm, after removing overlapping
vertices, and the real community structure after removing over-
lapping vertices. Based on this finding, the author proposed
the algorithm POVC (Permanence based Vertex-replication
algorithm for Overlapping Community detection), in which
a non-overlapping community structure is first extracted by
a traditional community detection algorithm, and then the
community association of marginal vertices of the discovered
structure are adjusted according to the defined ”Permanence
based Vertex-replication” index to find overlapping structures.
The algorithm presented by [35] is similar but the adjusting
of marginal vertices and their neighbors is determined by
the condition if their leaving or joining could improve the
quality of the related community. The performance of such
an algorithm is heavily dependent on whether the used non-
overlapping community detection algorithm could correctly
find the boundaries of communities. Moreover, the strategy
of adjusting only once may omit mutual influence between
sequential adjustments and thus affects the performance.

In [36] Tanmoy et. al. proposed the MeDoc (Meta clus-
tering based Disjoint and Overlapping Community detection)
algorithm that can be used for revealing both disjoint and
overlapping community structure in networks. The algorithm
uses an ensemble approach, i.e., combining the strength of
several non-overlapping community detection algorithms thus
to detect a beter community structure. However, a vertex has
a chance to be attributed to correct communities only if these
correct communities could be found by any of the used non-
overlapping detection algorithms in any run.

III. ALGORITHM DESCRIPTION

We designed the PSOCD algorithm based on the Giraph++
system [37], which is a distributed graph processing system
and provides a ”think like a graph” programming model.

A. Overview

Our proposed community detection algorithm consists of
tree phases, namely, partition, initialization and evolution. In
the first phase, partition, an analyzed large scale network is
divided into a number of smaller sized sub-networks, which
will be processed in parallel in the subsequent phases. In the
initialization phase, the algorithm finds an initial community
for each vertex of each sub-network. These initial communities
provide a foundation for the following phase of community
evolution. In the evolution phase the algorithm evolves the
community structure by joining community associations of
each vertex iteratively. After a number of evolutions, an

optimal community structure of the network will gradually
emerge.

B. Partition Phase

In the partition phase a large scale network is divided into a
number of smaller sub-networks with approximately the same
size. Furthermore, the connections among the identified dif-
ferent sub-networks should be minimal. The target of equally
sized sub-networks rougly equalizes the processing time for
each sub-network, thus reducing idle waiting time (caused
by the parallel approach of our algorithm, before the next
step of the algorithm begins). Minimal connections among the
identified sub-networks is aimed for because the connections
between the sub-networks have a significant influence on the
performance of the subsequent phase of community evolution.
For example, during its evolution, a vertex should notify its
neighbors of changes of its communities and its actions. These
local neighbors could be notified easily in the Giraph++ system
but if a neighbor locates in another sub-network, the vertex
must send community change- or action-messages across a
larger communication network. Therefore, a vertex is preferred
to be assigned to a sub-network with as less connections with
other sub-networks (i.e., less external neighbors) as possible.
Currently, the ”Metis” algorithm [38] is used as the partition
method, which could produce a partition structure with mini-
mum edges across partitions. The generated sub-networks are
loaded into worker nodes of a Giraph++ system for parallel
processing.

C. Initialization Phase

As mentioned earlier, member vertices of a community
have denser connections among them, but comparatively less
connections with members of other communities. There is no
more denser connected part in a network than a k-clique, of
which each member is connected to all the other members of
the k-clique. In other words, a maximum k-clique represents
the strongest sense of community. In our algorithm, we take
a smallest k-clique, 3-clique, as the initial core community
for the three member vertexes. For simplicity, we find a 3-
clique for an uninitialized vertex of a sub-network with its two
uninitialized local neighbors as their initial community. If such
a 3-clique does not exist for a vertex, then the vertex forms
a community with only itself as a member. The initializing
algorithm for a sub-network is shown in Fig. 1. Please note
that the algorithm is executed in parallel by different worker
nodes responsible for different sub-networks.

To find if a 3-clique with two neighbors exists, a vertex
must be able to check if its two neighbors are connected
mutually to each other. Hence a vertex must know its neigh-
bors’ neighbors while executing the initializing algorithm. This
is achieved by each vertex sending its neighbors to all its
neighbors firstly. The sending procedure is shown in Fig. 2.

In the later evolution phase, a vertex will check each of its
neighbor if it should join into the neighbor’s communities. In
the distributed approach, a vertex should access its external
neighbors’ joining communities too. For the sake of such
accesses, the initialized local communities of vertices in a sub-
network should be sent to their external neighbors, located in
other sub-networks, to make them have a chance to join, i.e.,

1:
2: ALGORITHM: InitializeCommunities(sub-network)
3:
4: for (each vertex V in the sub-network) do
5: if (V has been initialized) then
6: continue
7: end if
8: if (V and its two uninitialized neighbors N1 and N2

form a 3-clique) then
9: create a new community NC containing V, N1 and

N2;
10: else
11: create a singleton community NC containing V;
12: end if
13: save NC in local community structure LCS;
14: save ID of NC in each member;
15: tag members of NC as being initialized;
16: end for
17:

Fig. 1. Finding an initial community for each vertex of a sub-network.

1:
2: ALGORITHM: NotifyVertexNeighbors(sub-network)
3:
4: for (each vertex V in the sub-network) do
5: for (each neighbor N of V) do
6: if (N is a local neighbor) then
7: get local neighbor N;
8: directly set V’s neighbors for N;
9: else

10: SendMsg(N,[operation=notifyNeighbors, V and its
neighbors]);

11: end if
12: end for
13: end for
14:

Fig. 2. Sending neighbors of vertexes in a sub-network to all their neighbors.

a community could be expanded freely across sub-networks.
The community sending algorithm is shown in Fig. 3.

D. Evolution Phase

The evolution phase plays a key role in finding an optimal
community structure for a network. The main question in evo-
lution phase is whether a vertex should join into a community,
i.e., under which condition a vertex will join into a community?
To address it, we define a new type of connection strength of
a vertex with a community.

1) Connection Strength: Tanmoy et. al. [39] claimed that
the connection strength of a vertex belonging to a community
is determined by two factors: (1) the number of connections
between the vertex and each other community, but not the
total number of connections between the vertex and other
communities and (2) the strength with which this vertex con-
nects to the candidate community, thus not only the number of
connections between the vertex and the candidate community.
The strength is measured as the clustering coefficient of the
vertex’s neighbors belonging to the candidate community. We
propose a new type of connection strength, the connection

1:
2: ALGORITHM: NotifyNewCommunities(sub-network)
3:
4: for (each community C in local community structure LCS

of the sub-network) do
5: for (each recently joining vertex JV of C) do
6: for (each external neighbor EN of JV) do
7: if (EN is not a member of C) then
8: SendMsg(EN,[operation=notifyCom,C]);
9: end if

10: end for
11: end for
12: end for
13:

Fig. 3. Sending local communities of vertexes in a sub-network to their
neighbors located in other sub-networks.

score (𝐶𝑆), following the two mentioned factors:

𝐶𝑆(𝑣) =

[
𝐼(𝑣)

𝐷(𝑣)

](1−𝑐𝑖𝑛(𝑣))

(1)

where 𝐼(𝑣) is the connection number between vertex 𝑣 and
a candidate joining community, 𝐷(𝑣) indicates the degree
of vertex 𝑣, and 𝑐𝑖𝑛(𝑣) represents the clustering coefficient
of 𝑣’s neighbors belonging to the candidate community. The
𝐷(𝑣) could be replaced with 𝐸𝑚𝑎𝑥(𝑣), the maximum number
of connections between 𝑣 and communities, as well. In 𝐶𝑆,
a connection strength is first measured by the connection
number, and then magnified by the corresponding clustering
coefficient. Therefore, the 𝐶𝑆 may get a subtler distinction
between connection strengths.

2) Vertex Community Evolving: A vertex either joins into
communities to which some of its neighbors belong or stays as
a singleton community. Therefore, in each evolution round, the
algorithm updates a vertex’s communities as follows: first, get
currently joining communities of all neighbors of the vertex as
candidate communities, which the vertex will try to join into.
Note that two neighbors may join into the same community,
thus the duplicated ones should be removed from the candi-
dates for efficiency. Second, compute the connection strengths
for the vertex with each candidate community. Finally, add the
vertex into the candidate communities with ”stronger” strength,
and remove the vertex from originally joining communities
which are not joined in this iteration of the evolution. The
strength of which the ratio between it and the maximum
connection strength exceeds a given threshold is considered
as stronger. It must be noticed that only if the connection
number of a vertex with a community is larger than or equal
to 3, could the connection strength be computed, because the
clustering coefficient is meaningful only if this condition is
satisfied. If the connection number equals 2, a vertex will
join into such a candidate community only if its maximum
connection is not more than 3. Otherwise a vertex will not join
into a candidate community. The vertex community evolving
algorithm is described as in Fig. 4.

3) Keeping Consistence: Note that the algorithm evolves a
vertex’ communities in a distributed manner, thus the changes
of a community, i.e., some vertexes joining and some leaving,
should be notified to its replicas in other sub-networks in

1:
2: ALGORITHM: EvolveCommunities(sub-network)
3:
4: for (each vertex V in the sub-network) do
5: get joining communities of V’s neighbors as candidates;
6: compute connection strength CS for V with each can-

didate;
7: for (each candidate community C) do
8: if (connection number CN of V with C ≥ 3) then
9: if ((CS with C / CS𝑚𝑎𝑥) ≥ threshold) then

10: V joins into C;
11: end if
12: else if ((CN with C == 2) and (CN𝑚𝑎𝑥 ≤ 3)) then
13: V joins into C;
14: end if
15: end for
16: for (each community C V joins in originally) do
17: if (V does not join in C now) then
18: V leaves from C;
19: end if
20: end for
21: end for
22:

Fig. 4. Evolving communities of vertexes in a sub-network.

1:
2: ALGORITHM: NotifyVertexActions(sub-network)
3:
4: for (each community C in local community structure LCS)

do
5: for (each external member EM of C) do
6: SendMsg(EM,[operation=joining, ID of C, joining

vertexes and their neighbors]);
7: SendMsg(EM,[operation=leaving, ID of C, leaving

vertexes]);
8: end for
9: end for

10:

Fig. 5. Sending vertex actions of communities in a sub-network.

order to keep them being consistent. The algorithm achieves
this by sending information on recently joining and leaving
vertexes of a community to its external members, who will be
responsible for updating their local replicas once all vertices
of a sub-network finished evolution. The algorithm of sending
information on recently joining and leaving vertexes of a
community is shown in Fig. 5.

4) Community Merging: We will explain later that in our
algorithm a community is just saved once in the local commu-
nity structure of a sub-network and the joining local vertices
of a community reference the community by saving its ID. It
could happen that a community is contained in another one
completely. These contained communities should be merged
(and deleted) to eliminate unnecessary vertex actions and
thereby speed up the algorithm’ execution. Our algorithm
merges communities from a vertex viewpoint, i.e., it checks
each community a vertex belongs to if it is contained by
another community the vertex joining. The reason is that if a
community is contained by another one, the common members

1:
2: ALGORITHM: MergeCommunities(sub-network)
3:
4: for (each vertex V in the sub-network) do
5: get V’s joining communities;
6: sort communities firstly by their sizes, then by commu-

nity IDs;
7: for each small community SC do
8: if SC equals another community then
9: delete the community with small ID from LCS;

10: notify local members of the deleted community;
11: else if SC is contained by a big community BC then
12: delete SC from LCS;
13: notify local members of the deleted community;
14: end if
15: end for
16: end for
17:

Fig. 6. Merging communities from a vertex viewpoint.

must join into both, and thus the merging could be found easily
by searching within a common member’s joining communities.
This search strategy greatly reduces the effort needed to find
a containing community for a given community. The merging
algorithm is shown in Fig. 6.

While deleting a community, the deletion should be notified
to members of the community. Fortunately, if a merging
occurs, only local members of the community need to be
notified, but external members located in other sub-networks
need not. It is because that if a deleted community exists
in a sub-network, the containing community must exist too.
Therefore, the same merging will occur as well. However,
there is a special case needed to implement the same merging
occurring in different sub-networks. This special case is the
situation that the contained and containing communities are
completely the same. It should be guaranteed that in such a
situation the deleted community should be the same one. In our
implementation, we fulfill this requirement by always deleting
the community with a small ID.

E. Alogrithm Framework

The framework of our proposed algorithm is show in
Fig. 8. The functions start with ”process” process messages
received from last super-step for vertices in a sub-network and
update states of communities in local community structures
and the states of local vertices. In super-step 0, the algorithm
notifies neighbors of each local vertex’ neighbors. In super-
step 1, after processing neighbor notification messages, the
algorithm finds an initial community for each local vertex
and notifies its external neighbors the initial community. The
two functions ”NotifyNewCommunities” and ”NotifyVertex-
Communities” (described in Fig. 7) together complete such
notifications. In subsequent even super-steps, the algorithm
first processes received community notification messages, then
evolves communities of each vertex in a sub-network and
finally is sending vertex actions on each local community to
its external members to keep community replicas consistent.
In subsequent odd super-steps, after processing received vertex
action messages, community replicas in different sub-networks

1:
2: ALGORITHM: NotifyVertexCommunities(sub-network)
3:
4: for (each vertex V in the sub-network) do
5: for (each neighbor N of V) do
6: if (N is a local vertex) then
7: get local vertex N;
8: directly set V’s communities for N;
9: else

10: SendMsg(N,[operation=notifyCommunity, V and
its communities]);

11: end if
12: end for
13: end for
14:

Fig. 7. Sending joining communities of vertexes in a sub-network.

1:
2: ALGORITHM: Compute(sub-network)
3:
4: if (super-step == 0) then
5: NotifyVertexNeighbors(sub-network);
6: else if (super-step == 1) then
7: ProcessNeighborMessages(sub-network);
8: InitializeCommunities(sub-network);
9: NotifyNewCommunities(sub-network);

10: NotifyVertexCommunities(sub-network);
11: else if ((super-step % 2) == 0) and (super-step ≤

MAXSTEP)) then
12: ProcessNewCommunityMessages(sub-network);
13: ProcessVertexCommunityMessages(sub-network);
14: EvolveCommunities(sub-network);
15: NotifyVertexActions(sub-network);
16: else if ((super-step % 2) == 1) and (super-step ≤

MAXSTEP)) then
17: ProcessActionMessages(sub-network);
18: MergeCommunities(sub-network);
19: NotifyNewCommunities(sub-network);
20: NotifyVertexCommunities(sub-network);
21: else
22: ProcessActionMessages(sub-network);
23: Set all local vertexes to be halt;
24: end if
25:

Fig. 8. The framework of the PSOCD algorithm.

are kept in a consistent state. Then the algorithm merges con-
tained communities if possible. Finally, the algorithm notifies
external neighbors of members of the retained communities the
local communities, and prepares for the next round evolving.

Theoretically, the algorithm will terminate if there is no
vertex left that is changing its communities. However, such
a graceful termination may not be achieved due to a few
vertices who, in a cyclic way, repeat the same decisions
within several sequential evolving generations, i.e., leaving
from a community and later joining into it again, because of
mutual influence of actions of different vertexes. Therefore,
the algorithm sets a maximum evolving generations to make
sure it will terminate eventually.

F. Considerations on Implementation

In a swarm intelligence system each individual keeps its
state and interacts with its neighbors and the system envi-
ronment to make its own decisions independently. For the
community detection problem the state of a vertex includes its
neighbors, neighbors’ neighbors, joining communities, external
neighbors’ communities, and more. Clearly, the communities
saved by vertices of a sub-network have a lot of replicas in a
working machine node. To keep these replicas being consistent,
a message must be sent to each vertex who holds a replica.
Note that in Giraph++ system, a sub-graph programming
model is supported, such that all local vertexes of a sub-
network could share some variables among them. Therefore,
in our implementation, communities used locally are held by
a sub-network and identified by unique identifiers across the
whole system and a vertex only saves IDs of communities
into which itself joins or its external neighbors join. There
are two advantages in following this approach: (1) the con-
sumed memory is reduced; (2) the messages needed to keep
community replicas being consistent are decreased greatly.
The reason for that is that if one vertex updates the state
of a community, all vertices referencing this community will
be aware of the changes immediately as well. Therefore, for
those messages related to community state updating(including
community notification messages and vertex action notification
messages), only one message needs to be sent to a selected
representative vertex from a sub-network and the representative
vertex is then responsible for updating its local community
replica. As a result, such a message needs to be sent for the
times of at most the number of sub-networks. In addition,
when a vertex notifies its external neighbors of its joining
communities, it only sends the IDs of the joining communities
which is much smaller in size than the sending of the whole
structures of communities.

As the evolution phase progresses, some communities may
no longer be referenced by any vertex. To remove these
unnecessarily saved communities from the local community
structure of a sub-network, at the beginning of each evolving
round, the algorithm also examines all communities and deletes
null referenced ones.

G. Time Complexity Analysis

It is difficult to analyze the time complexity of a parallel
algorithm in distributed running. In this section, we focus on
the algorithm execution of one sub-network and analyze the
time complexity of the two major operations of the PSOCD
algorithm, i.e., the initialization and evolution phases. The used
labels are listed in Table I. We assume all vertices are divided
approximately equally into a number of sub-networks, and
network communication time is not taken into consideration.

The initialization phase consists of two super-step com-
putations. The first (super-step 0) consists of each vertex
sending information about its neighbors to all its neighbors. In
the second (super-step 1) the sub-network processes received
neighbor notification messages and finds a 3-clique initial
community for each local vertex. The time complexity of the
sending neighbor information is 𝑂(�̄�𝑉 × �̄�𝑁), and the worst
time complexity of the finding procedure is 𝑂(�̄�𝑉 × �̄�2

𝐿𝑁)
for finding two connected local neighbors. The complexity

of message processing is same as message sending since
a vertex is an external neighbor of its external neighbors
too. As a result, the worst time complexity of initializing is
𝑂(�̄�𝑉 × �̄�𝑁 + �̄�𝑉 × �̄�2

𝐿𝑁 + �̄�𝑉 × �̄�𝐸𝑁). If �̄�𝑁 , �̄�𝐿𝑁

and �̄�𝐸𝑁 are small numbers comparing with �̄�𝑉 , the time
complexity becomes approximately linear. Fortunately, with a
sub-network having good community structure, finding a 3-
clique with two local neighbors for most vertexes needs not
𝑁2

𝑣𝐿𝑁 times searches, especially for vertexes with a large
number of local neighbors. When using a good partition
method, the number of cross-sub-network edges is as less as
possible, thus the �̄�𝐸𝑁 will not be too large, either.

The evolution phase is executed in a number of iterations
and each iterations consists of two super-steps as well. In the
first super-step (even super-step), the sub-network processes
received messages of new communities and vertex commu-
nities notification, and evolves communities for each local
vertexes. Finally, the sub-network sends community updates
(vertex joining and leaving) to selected representative vertexes
of other sub-networks if a replica exists for the purpose of
keeping them being consistent. The worst time complexity of
evolving vertex communities is 𝑂(�̄�𝑉 ×�̄�𝑁 ×�̄�𝑉 𝐶) for each
vertex checking all candidate communities for joining. The
worst time complexity of sending community update messages
is 𝑂(�̄�𝐶 ×𝑁𝑃).

In the second super-step (odd super-step), the sub-network
processes received community update messages, and merges
communities from a vertex viewpoint if possible. Then it
sends new community messages to external neighbors (but not
members of the community) of community members, and com-
munity IDs of each vertex to its external neighbors. The worst
merging time complexity is 𝑂(�̄�𝑉 × �̄�2

𝑉 𝐶) for checking each
community if it is contained in another one. The worst time
complexity of sending new communities notification messages
is 𝑂(�̄�𝐶 × 𝑁𝑃), and the time complexity of sending vertex
communities notification messages is 𝑂(�̄�𝑉 × �̄�𝐸𝑁). Note
that, as the first time evolving vertex communities, the new
communities and vertex communities notification messages are
sent at the end of the initialization phase.

Therefore, the worst time complexity of one evolution
iteration is 𝑂(�̄�𝑉 × �̄�𝑁 × �̄�𝑉 𝐶 + �̄�𝑉 × �̄�2

𝑉 𝐶 + 2�̄�𝐶 ×
𝑁𝑃 + 2�̄�𝑉 × �̄�𝐸𝑁). The �̄�𝐶 usually becomes small at later
evolution iterations. If �̄�𝑁 , �̄�𝑉 𝐶 , and �̄�𝐸𝑁 are small numbers
comparing with �̄�𝑉 , the time complex is approximately linear,
too.

When whole cluster is considered, the performance of the
initialization or one evolution iteration depends on the worst
of sub-networks processing by a number of working machine
nodes, plus the worst network communication time. Generally,
it is a sensible assumption that the network bandwidth is
sufficient and thus network communication will not become
the bottleneck of the algorithm’s execution.

IV. VERIFICATION

In this section the performance of our proposed algorithm
will be verified and compared against the SLPA [12] and the
OSLOM [21], two algorithms known as the best for networks
with either low overlapping density or high overlapping density
[6].

TABLE I. TIME COMPLEX ANALYSIS LABELS

Varable Description

𝑁𝑃 sub-network number

�̄�𝑉 averaged number of vertexes in a sub-network

�̄�𝐶 averaged number of local communities in a sub-network

�̄�𝑁 averaged number of neighbors of a vertex

�̄�𝐿𝑁 averaged number of local neighbors of a vertex

𝑁𝑣𝐿𝑁 the number of local neighbors of vertex v

�̄�𝐸𝑁 averaged number of external neighbors of a vertex

�̄�𝑉 𝐶 averaged number of joined communities of a vertex

TABLE II. LFR PARAMETER SETTING

Parameter Description Experiment Setting

N number of vertexes 100,000

k average degree of vertexes 40

maxk maximum degree 100

𝜇 mixing parameter from 0.1 to 0.7,increased by 0.1.

minc minimum community size 20

maxc maximum community size 100

on number of overlapping from 10% to 80% of N,

vertexes increased by 10 percent.

om number of memberships of from 1 to 10,increased by 1.

overlapping vertexes

others other parameters default values.

A. Network Data

We use the LFR model [40] synthesized complex networks
as evaluation data set. The parameter-settings can be found in
Table II. 25 networks were generated in total with different
parameter combinations. Each network is divided into 5 ap-
proximately equal-sized sub-networks by the Metis algorithm.

B. Community Structure Quality Measurement

To evaluate the quality of the detected community struc-
ture, we adopt the Normalized Mutual Information (NMI)
for overlapping community structure (denoted as ONMI) [41]
to measure the similarity between the detected community
structure and the real ground truth. In addition, to assess the
quality of detected overlapping vertexes, the recall, precision
and F-score metrics are employed.

C. Experiment Setup

We deployed the PSOCD algorithm on a cluster with 6
virtual machines on the Amazon Web Service (AWS). Each
virtual machine has 4 core CPUs and 16GB memory.

The maximum compution super-steps in experiments is set
as 30. During the first half number of evolution iterations,
the threshold of connection strength ratio of vertex joining
is set as 0.8, in order to get a high quality core community
structure, and then in the second half, the threshold is reduced
to 0.5 or even less, for the purpose of getting more complete
communities.

In the run of the SLPA algorithm, its parameter 𝑟 takes
all possible values and we picked out the best result as the
compared one. The three algorithms are run 30 times on each
test network.

D. Results Analysis

We computed the average results of 30 runs and their
standard deviations. Fig.9 shows the ONMI results for test
networks. As seen from the results, (1) while 𝜇 changes from
0.1 to 0.7, the ONMIs of the PSOCD algorithm detected
community structures are always better than those of the SLPA
algorithm and OSLOM algorithm discovered, especially when
𝜇 is set as 0.7. (2) As 𝑜𝑛 increases from 10% of total vertex
number to 80%, the ONMIs of all three algorithms are decreas-
ing greatly, except as the percentage reaching 70% and 80% for
the OSLOM where the ONMI is slightly increaing. However,
those of the PSOCD are much better than those of the two
others, particularly for high overlapping density networks. (3)
While the overlapping memberships 𝑜𝑚 increases from 1 to
10, again the ONMIs of PSOCD are much better than those of
the SLPA and the OSLOM except 𝑜𝑚 = 1 and 2. The more
the gains, the larger the 𝑜𝑚.

As for the quality of discovered overlapping vertexes, only
the F-scores of test networks is given in Fig.10 due to space
limit. It confirms that the performance of the PSOCD is better
than those of the SLPA and the OSLOM, as a whole. In
fact, the precisions of the SLPA and the OSLOM are 100%
for a number of tested networks, and are slightly better than
those of the PSOCD. However, the margins between the two
algorithms are small if the SLPA and the OSLOM are better
and the precisions of the PSOCD are fairly good, particularly
for high overlapping density networks. Moreover, the PSOCD
could find out the overwhelming majority of true overlapping
vertexes, and its recalls are always better than those of the two
others, especially for overlapping density and high overlapping
diversity networks.

The distributions of detected overlapping memberships
of one run for networks with 𝑜𝑚 changing are shown in
Fig.11(excluding 𝑜𝑚 = 1). It is clear that the PSOCD is able to
correctly identify most of the overlapping memberships, even
at high overlapping diversity, while the SLPA and the OSLOM
can only correctly identify small overlapping memberships. As
𝑜𝑚 increases further, the overlapping memberships identified
by the SLPA and the OSLOM are dispersed, and the real ones
cannot be discerned. Note that we set the overlapping vertex
number to be 10% percent of all vertices.

Therefore, it is safe to conclude that the performance of
the proposed PSOCD is better than that of the SLPA and
the OSLOM, and the PSOCD is an appropriate choice for
high overlapping density or high overlapping diversity network
analysis.

V. CONCLUSION

In this paper, we proposed a parallel self-organizing com-
munity detection algorithm called PSOCD, which is based
on the idea of swarm intelligence. The PSOCD algorithm
first divides a large scale network into a number of sub-
networks and treats each sub-network as a swarm intelligence
sub-system. Each vertex of a sub-network, as an individual,
can make its own decisions to join in or leave from com-
munities mainly according to a predefined rule, if the ratio
of its connection strength with a candidate community to the
maximum connection strength exceeds a designated threshold.

0.2 0.4 0.6

μ

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

ON
MI

(a) μ changing

SLPA
OSLOM
PSOCD

20 40 60 80

on(%)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ON
MI

(b) on changing

SLPA
OSLOM
PSOCD

0 2 4 6 8 10

om

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

ON
MI

(c) om changing

SLPA
OSLOM
PSOCD

Fig. 9. ONMIs of test synthesized networks.

0.2 0.4 0.6

μ

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

F-s
co

re

(a) μ changing

SLPA
OSLOM
PSOCD

20 40 60 80

on(%)

0.4

0.5

0.6

0.7

0.8

0.9

1

F-s
co

re

(b) on changing

SLPA
OSLOM
PSOCD

2 4 6 8 10

om

0.85

0.9

0.95

1

F-s
co

re

(c) om changing

SLPA
OSLOM
PSOCD

Fig. 10. F-scores of test synthesized networks.

2 3 4 5 6 7 8 9 10 11 12 13

om = 2

0

0.05

0.1

pe
rce

nt(
%

)

2 3 4 5 6 7 8 9 10 11 12 13

om = 3

0

0.05

0.1

2 3 4 5 6 7 8 9 10 11 12 13

om = 4

0

0.05

0.1
SLPA
OSLOM
PSOCD

2 3 4 5 6 7 8 9 10 11 12 13

om = 5

0

0.05

0.1

pe
rce

nt(
%

)

2 3 4 5 6 7 8 9 10 11 12 13

om = 6

0

0.05

0.1

2 3 4 5 6 7 8 9 10 11 12 13

om = 7

0

0.05

0.1

2 3 4 5 6 7 8 9 10 11 12 13

om = 8

0

0.05

0.1

pe
rce

nt(
%

)

2 3 4 5 6 7 8 9 10 11 12 13

om = 9

0

0.05

0.1

2 3 4 5 6 7 8 9 10 11 12 13

om = 10

0

0.05

0.1

Fig. 11. Distributions of overlapping memberships.

Local communities of each sub-network are sent to other sub-
networks if needed to make their members have a chance to
join in, and vertex actions of a sub-network are sent as well
to guarantee community replicas being in consistent state. By
having all vertices iteratively making these decisions over a
number of generations, an optimal community structure of
the whole large network is emerging gradually. Theoretically,
when no vertex acts any more (joins or leaves a community),
the algorithm terminates as it is assumed that an optimal
community structure is reached. However, a few number of
vertices may take evolve a cyclic behavior within several
sequential evolution iterations, i.e., repeatedly leaving from a
community to later joining it again, due to mutual influence of
actions of different vertices. Thus in our implementation we
limited the maximum evolving generations to make sure the
algorithm terminates.

ACKNOWLEDGMENT

The authors would like to thank Amazon Web Services
for providing resources for us to conduct experiments. This
work was supported by the Shaanxi Science and Technology
Innovation Project plan (No. 2016KTZDGY04-01), Project
of Natural Science Foundation Research Project of Shaanxi
Province (No. 2016JM6048), Science and Technology Project
of Shaanxi Province Science and Technology Department (No.
2016GY-092), Special Research Program of Shaanxi Provin-
cial Department of Education (No. 16JK1687), and New Star
Team of Xi’an University of Posts & Telecommunications.

REFERENCES

[1] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi,
“Defining and identifying communities in networks,” Proceeding of the

National Academy of Sciences of the United States of American, vol.
101, no. 9, pp. 2658–2663, 2004.

[2] G. Palla, I. Derenyi, I. Farkas, and T. Vicsek, “Uncovering the overlap-
ping community structure of complex networks in nature and society,”
Nature, vol. 435, no. 7043, pp. 814–818, 2005.

[3] M. Coscia, F. Giannotti, and D. Pedreschi, “A classification for com-
munity discovery methods in complex networks,” Statistical Analysis
and Data Mining, vol. 4, no. 5, pp. 512–546, 2011.

[4] S. Fortunato, “Community detection in graphs,” Physics Reports, vol.
486, no. 3, pp. 75–174, 2010.

[5] A. Amelio and C. Pizzuti, “Overlapping community discovery methods:
A survey,” in Lecture Notes in Social Networks, ule Gndz-dc and
A. ima Etaner-Uyar, Eds. Vienna: Springer, 2014, ch. Social Networks:
Analysis and Case Studies, pp. 105–125.

[6] J. Xie, S. Kelley, and B. K. Szymanski, “Overlapping community
detection in networks: The state-of-the-art and comparative study,” ACM
Computing Surveys, vol. 45, no. 4, p. 43, 2013.

[7] M. Planti and M. Crampes, “Survey on social community detection,”
in Computer Communications and Networks, N. Ramzan, R. van Zwol,
J.-S. Lee, K. Clver, and X.-S. Hua, Eds. London: Springer, 2013, ch.
Social Media Retrieval, pp. 65–85.

[8] A. Lancichinetti and S. Fortunato, “Community detection algorithms:
a comparative analysis,” Physical review E, vol. 80, no. 5, p. 056117,
2009.

[9] S. Gregory, “Finding overlapping communities in networks by label
propagation,” New Journal of Physics, vol. 12, no. 10, p. 103018, 2010.

[10] Q. Dai, M. Guo, Y. Liu, and L. Chen, “Mlpa: Detecting overlapping
communities by multi-label propagation approach,” in Proceedings of
the 2011 IEEE 11th International Conference on Data Mining Work-
shops., vol. Proc of 2013 IEEE Congress on Evolutionary Computation,
2013, pp. 681–688.

[11] Z. Wu, Y. Lin, S. Gregory, H. Wan, , and S. Tian, “Balanced multi-label
propagation for overlapping community detection in social networks,”
Journal of Computer Science and Technology, vol. 27, no. 3, p. 468479,
2012.

[12] J. Xie, B. K. Szymanski, and X. Liu, “Slpa: Uncovering overlapping
communities in social networks via a speaker-listener interaction dy-
namic process,” in Proceedings of the 2011 IEEE 11th International
Conference on Data Mining Workshops., 2011, pp. 344–349.

[13] Z. Liang, F. Y. Jianping Li, and P. Athina, “Detecting community
structure using label propagation with consensus weight in complex
network,” Chinese Physics B, vol. 23, no. 9, p. 098902, 2014.

[14] H. Sun, J. Huang, Y. Tian, Q. Song, and H. Liu, “Detecting overlapping
communities in networks via dominant label propagation,” Chinese
Physics B, vol. 24, no. 1, p. 018703, 2015.

[15] J. Baumes, M. K. Goldberg, M. S. Krishnamoorthy, and N. Preston,
“Finding communities by clustering a graph into overlapping sub-
graphs,” in Proceedings of the IADIS International Conference on
Applied Computing, 2005, p. 97104.

[16] J. Baumes, M. Goldberg, and M. Magdon-Ismail, “Efficient identifica-
tion of overlapping communities,” in Proceedings of the 2005 IEEE
International Conference on Intelligence and Security Informatics,
2005, p. 2736.

[17] A. Lancichinetti, S. Fortunato, and J. Kertesz, “Detecting the overlap-
ping and hierarchical community structure of complex networks,” New
Journal of Physics, vol. 11, p. 033015, 2009.

[18] Y. Li and Z. Zhu, “A fast method of detecting overlapping community
in network based on lfm,” Journal of Software, vol. 10, no. 7, pp. 825–
834, 2015.

[19] F. Wei, W. Qian, W. Chen, and A. Zhou, “Detecting overlapping
community structures in networks,” World Wide Web, vol. 12, no. 2,
p. 235261, 2009.

[20] M. Aaron and H. N. J, “Detecting highly overlapping communities with
model-based overlapping seed expansion,” in Proceedings of the 2010
International Conference on Advances in Social Networks Analysis and
Mining, 2010, p. 112119.

[21] A. Lancichinetti, F. Radicchi, J. J. Ramasco, and S. Fortunato, “Finding
statistically significant communities in networks,” PLoS ONE, vol. 6,
no. 4, p. e18961, 2011.

[22] M. Coscia, G. Rossetti, F. Giannotti, and D. Pedreschi, “Uncovering
hierarchical and overlapping communities with a local-first approach,”
Transactions on Knowledge Discovery from Data, vol. 9, no. 1, p. 6,
2014.

[23] E. H. W. Xu and P. M. Hui. (2015, Sep) Efficient
detection of communities with significant overlaps in networks:
Partial community merger algorithm. [Online]. Available:
http://arxiv.org/pdf/1509.00556v1.pdf

[24] B. S. Rees and K. B. Gallagher, “Overlapping community detection
by collective friendship group inference,” in Proc of 2010 International
Conference on Advances in Social Networks Analysis and Mining, 2010,
pp. 375–379.

[25] R. Shang, S. Luo, Y. Li, L. Jiao, and R. Stolkin, “Large-scale commu-
nity detection based on node membership grade and sub-communities
integration,” Physica A: Statistical Mechanics and its Applications, vol.
428, pp. 279–294, 2015.

[26] W. Chen, Z. Liu, X. Sun, and Y. Wang, “A game-theoretic framework
to identify overlapping communities in social networks,” Data Mining
and Knowledge Discovery, vol. 21, no. 2, p. 224240, 2010.

[27] H. Alvari, S. Hashemi, and A. Hamzeh, “Discovering overlapping
communities in social networks: A novel game-theoretic approach,” AI
Communications, vol. 26, no. 2, pp. 161–177, 2013.

[28] ——, “Detecting overlapping communities in social networks by game
theory and structural equivalence concept,” in Proceedings of the Third
international conference on Artificial intelligence and computational
intelligence, September 2011, pp. 620–630.

[29] A. Hajibagheri, H. Alvari, A. Hamzeh, and S. Hashemi, “Social network
community detection using the shapley value,” in 2012 16th CSI Inter-
national Symposium on Artificial Intelligence and Signal Processing,
May 2012, pp. 222–228.

[30] C. Pizzuti, “Overlapped community detection in complex networks,”
in Proc of the 11th Annual conference on Genetic and Evolutionary
computation, 2009, p. 859866.

[31] X. Zhou, Y. Liu, J. Zhang, T. Liu, and D. Zhang, “An ant colony based
algorithm for overlapping community detection in complex networks,”
Physica A: Statistical Mechanics and its Applications, vol. 427, pp.
289–301, 2015.

[32] B. S. Rees and K. B. Gallagher, “Overlapping community detection
using a community optimized graph swarm,” Social Network Analysis
and Mining, vol. 2, no. 4, pp. 405–417, 2012.

[33] ——, “Detecting overlapping communities in complex networks using
swarm intelligence for multi-threaded label propagation,” in Studies in
Computational Intelligence. Berlin Heidelberg: Springer, 2013, ch.
Complex Networks, pp. 111–119.

[34] T. Chakraborty, “Leveraging disjoint communities for detecting overlap-
ping community structure,” Journal of Statistical Mechanics, vol. 2015,
no. 5, p. 05017, 2015.

[35] X. Wang, L. Jiao, and J. Wu, “Adjusting from disjoint to overlapping
community detection of complex networks,” Physica A, vol. 388, 2009.

[36] T. Chakraborty, N. Park, and V. Subrahmanian, “Ensemble-based al-
gorithms to detect disjoint and overlaping communities in networks,”
in 2016 IEEE/ACM International Conference on Advances in Social
Networks Analysis (ASONAM),, San Franciso, August 2016.

[37] Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda, and J. McPherson,
“From ’think like a vertex’ to ’think like a graph’,” in Proceedings of
the VLDB Endowment, vol. 7, no. 13, November 2013, pp. 193–204.

[38] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for
partitioning irregular graphs,” SIAM Journal on Scientific Computing,
vol. 20, no. 1, p. 359392, 1998.

[39] T. Chakraborty, S. Sriram, and G. Niloy, “On the permanence of
vertices in network communities,” in Proc of the 20th ACM SIGKDD
international conference on Knowledge discovery and data miningt,
2014, pp. 1396–1405.

[40] A. Lancichinetti, S. Fortunato, and F. Radicchi, “Benchmark graphs for
testing community detection algorithms,” Physical Review E, vol. 78,
no. 4, p. 046110, 2008.

[41] A. F. McDaid, D. Greene, and N. Hurley. (2013, Aug) Normalized
mutual information to evaluate overlapping community finding
algorithms. [Online]. Available: https://arxiv.org/pdf/1110.2515v2.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /blex
 /blsy
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /Cmb10
 /CMB10
 /Cmbsy10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /Cmbx10
 /CMBX10
 /Cmbx12
 /CMBX12
 /Cmbx5
 /CMBX5
 /Cmbx6
 /CMBX6
 /Cmbx7
 /CMBX7
 /Cmbx8
 /CMBX8
 /Cmbx9
 /CMBX9
 /Cmbxsl10
 /CMBXSL10
 /Cmbxti10
 /CMBXTI10
 /Cmcsc10
 /CMCSC10
 /Cmcsc8
 /CMCSC8
 /Cmcsc9
 /CMCSC9
 /Cmdunh10
 /CMDUNH10
 /Cmex10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /Cmff10
 /CMFF10
 /Cmfi10
 /CMFI10
 /Cmfib8
 /CMFIB8
 /Cminch
 /CMINCH
 /Cmitt10
 /CMITT10
 /Cmmi10
 /CMMI10
 /Cmmi12
 /CMMI12
 /Cmmi5
 /CMMI5
 /Cmmi6
 /CMMI6
 /Cmmi7
 /CMMI7
 /Cmmi8
 /CMMI8
 /Cmmi9
 /CMMI9
 /Cmmib10
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /Cmr10
 /CMR10
 /Cmr12
 /CMR12
 /Cmr17
 /CMR17
 /Cmr5
 /CMR5
 /Cmr6
 /CMR6
 /Cmr7
 /CMR7
 /Cmr8
 /CMR8
 /Cmr9
 /CMR9
 /Cmsl10
 /CMSL10
 /Cmsl12
 /CMSL12
 /Cmsl8
 /CMSL8
 /Cmsl9
 /CMSL9
 /Cmsltt10
 /CMSLTT10
 /Cmss10
 /CMSS10
 /Cmss12
 /CMSS12
 /Cmss17
 /CMSS17
 /Cmss8
 /CMSS8
 /Cmss9
 /CMSS9
 /Cmssbx10
 /CMSSBX10
 /Cmssdc10
 /CMSSDC10
 /Cmssi10
 /CMSSI10
 /Cmssi12
 /CMSSI12
 /Cmssi17
 /CMSSI17
 /Cmssi8
 /CMSSI8
 /Cmssi9
 /CMSSI9
 /Cmssq8
 /CMSSQ8
 /Cmssqi8
 /CMSSQI8
 /Cmsy10
 /CMSY10
 /Cmsy5
 /CMSY5
 /Cmsy6
 /CMSY6
 /Cmsy7
 /CMSY7
 /Cmsy8
 /CMSY8
 /Cmsy9
 /CMSY9
 /Cmtcsc10
 /CMTCSC10
 /Cmtex10
 /CMTEX10
 /Cmtex8
 /CMTEX8
 /Cmtex9
 /CMTEX9
 /Cmti10
 /CMTI10
 /Cmti12
 /CMTI12
 /Cmti7
 /CMTI7
 /Cmti8
 /CMTI8
 /Cmti9
 /CMTI9
 /Cmtt10
 /CMTT10
 /Cmtt12
 /CMTT12
 /Cmtt8
 /CMTT8
 /Cmtt9
 /CMTT9
 /Cmu10
 /CMU10
 /Cmvtt10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Dcb10
 /Dcbx10
 /Dcbxsl10
 /Dcbxti10
 /Dccsc10
 /Dcitt10
 /Dcr10
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /DoulosSIL
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KristenITC-Regular
 /KrutiDev040Bold
 /KrutiDev040BoldItalic
 /KrutiDev040Condensed
 /KrutiDev040Italic
 /KrutiDev040Thin
 /KrutiDev040Wide
 /KrutiDev060
 /KrutiDev060Bold
 /KrutiDev060BoldItalic
 /KrutiDev060Condensed
 /KrutiDev060Italic
 /KrutiDev060Thin
 /KrutiDev060Wide
 /KrutiDev070
 /KrutiDev070Condensed
 /KrutiDev070Italic
 /KrutiDev070Thin
 /KrutiDev070Wide
 /KrutiDev080
 /KrutiDev080Condensed
 /KrutiDev080Italic
 /KrutiDev080Wide
 /KrutiDev090
 /KrutiDev090Bold
 /KrutiDev090BoldItalic
 /KrutiDev090Condensed
 /KrutiDev090Italic
 /KrutiDev090Thin
 /KrutiDev090Wide
 /KrutiDev100
 /KrutiDev100Bold
 /KrutiDev100BoldItalic
 /KrutiDev100Condensed
 /KrutiDev100Italic
 /KrutiDev100Thin
 /KrutiDev100Wide
 /KrutiDev120
 /KrutiDev120Condensed
 /KrutiDev120Thin
 /KrutiDev120Wide
 /KrutiDev130
 /KrutiDev130Condensed
 /KrutiDev130Thin
 /KrutiDev130Wide
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MTExtraTiger
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SILDoulosIPA
 /SimHei
 /SimSun
 /SimSun-PUA
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /SymbolTiger
 /SymbolTigerExpert
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Tiger
 /TigerExpert
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064506390020064506420627064A064A0633002006390631063600200648063706280627063906290020062706440648062B0627062606420020062706440645062A062F062706480644062900200641064A00200645062C062706440627062A002006270644062306390645062706440020062706440645062E062A064406410629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003b103be03b903cc03c003b903c303c403b7002003c003c103bf03b203bf03bb03ae002003ba03b103b9002003b503ba03c403cd03c003c903c303b7002003b503c003b903c703b503b903c103b703bc03b103c403b903ba03ce03bd002003b503b303b303c103ac03c603c903bd002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405E605D205D4002005D505D405D305E405E105D4002005D005DE05D905E005D4002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF00410020006800690076006100740061006c006f007300200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d0065006700740065006b0069006e007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200073007a00e1006e0074002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a006800610074006a00610020006c00e9007400720065002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f043e04340445043e0434044f04490438044500200434043b044f0020043d0430043404350436043d043e0433043e0020043f0440043e0441043c043e044204400430002004380020043f04350447043004420438002004340435043b043e0432044b044500200434043e043a0443043c0435043d0442043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020007000720069006d00650072006e006900680020007a00610020007a0061006e00650073006c006a00690076006f0020006f0067006c00650064006f00760061006e006a006500200069006e0020007400690073006b0061006e006a006500200070006f0073006c006f0076006e0069006800200064006f006b0075006d0065006e0074006f0076002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005400690063006100720069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900720020015f0065006b0069006c006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

